气体信号分子和生物自由基检测仪
仪器概况
TBR4100气体信号分子和生物自由基检测仪是一款四通道高通量气体信号分子和生物自由基检测设备,可检测的指标包括一氧化氮(NO)、一氧化碳(CO)、硫化氢(H2S)、葡萄糖(Glu)、氧气(O2)以及过氧化氢(HPO)。
由于具有性能完全相同的电气隔离的四通道构造,可以高通量地同时检测四个样本或同一个样本中的四个不同指标;柔性碳纤维微型电极的开发,尖端大小仅有100微米(一氧化氮甚至开发出用于细胞内检测的 100纳米尖端的电极),可以在没有大的创伤情况下将电极直接插入到动物和植物体内,如麻醉动物体内或离体动物组织器官样本、植物叶片、根茎中进行实时在体检测,是模式动物和模式植物研究以及离体组织器官研究氧化应激及ROS检测的最佳工具,也是动物和植物体内信号分子和生物自由基指标如一氧化氮、硫化氢或过氧化氢变化动力学的最佳分析工具。
仪器特征
● 样本检测多通道:由于具有四个功能完全相同的电气隔离通道,可以 同时进行四个样本的检测,也可以用于单个样本的四个不同指标检测; 多种电极可选:不同检测指标的电极如一氧化氮(NO)、一氧化碳(CO)、硫化氢(H2S)、氧气(O2)、过氧化氢(HPO)和葡萄糖电极可选;
● 组织电极和溶液电极可选:由于柔性碳纤维电极的开发,使一氧化氮、硫化氢、过氧化氢电极的尖端更小,组织电极最小可达30微米,因此对整体动物和离体组织的创伤更小,应激更小,可用于插入动物和植物的组织内进行实时在体测量,也可以在动物离体组织器官或植物叶片、根茎中进行动力学观察; 2毫米溶液电极可用于溶液包括血清、尿液、唾液样本、组织及细胞匀浆中进行多种信号分子和自由基检测;
● 空间分辨率高:由于微电极通常是用尖端去检测样本环境中的物质含量,也就意味着尖端越小对空间越小的样本中化学梯度的变化同样可以测量,常常用于组织不同深度信号分子含量的测量,也用于非常小范围内信号分子和自由基的测量如眼睛前房,脑室等;
● 灵敏度高:由于采用电化学原理,对原子间氧化还原极小的电流皮安都可以记录,因此即使在体内几个纳摩尔信号分子的变化都能够清晰地记录;
● 反应速度快:微电极尖端越小,反应速度越快,化合物越容易扩散到电极尖端内部,一氧化氮、硫化氢和过氧化氢的反应时间小于5秒;氧气和一氧化碳反应时间小于10秒;
● 检测范围广:检测的分子中最低限可达纳摩尔级,最高限可达毫摩尔级,因此可用于模式动物的生理状态或病理状态的信号分子和生物自由基物质变化的检测;
主要用途
● 用于动物缺血再灌注损伤研究:心脏缺血再灌注, 脑缺血再灌注;
● 高血压机制及抗高血压药物作用机制研究;
● 糖尿病外周血管功能紊乱研究;
● 肿瘤生长代谢研究;
● 一氧化氮和硫化氢释放的体内纳米材料研究;
● 模式动物的氧化应激研究;
● 阿尔兹海默症的发病机制及治疗机制研究;
● 用于过敏性结肠炎的发病机制及治疗机制研究;
● 用于炎性疾病的自由基对模式动物影响的研究;
● 用于肿瘤组织、脑组织、心肌细胞、肌肉组织中线粒体氧化应激研究;
● 植物生理信号通路研究:
● 植物光合作用研究;
● 植物氧化应激研究;
● 气候因素如低氧、涝渍、干旱等植物胁迫研究;
● 生物因素如病虫害对植物胁迫研究:
● 水果的储存及保鲜研究;
● 植物种子萌发及根系发育研究;
● 缺血心肌细胞或衰竭心肌细胞线粒体呼吸代谢和氧化应激研究;
● 缺血脑组织细胞线粒体呼吸代谢和氧化应激研究;
● 缺血肾组织细胞线粒体呼吸代谢和氧化应激研究;
● 老年痴呆动物模型脑细胞线粒体呼吸代谢和氧化应激研究;
● 帕金森氏综合征等中枢神经疾病与线粒体功能紊乱研究;
● 肿瘤细胞线粒体呼吸代谢和氧化应激研究;
● 肝细胞线粒体代谢和氧化应激研究;
● 用于植物提取物对动物肝脏肾脏细胞线粒体呼吸代谢的研究;
● 用于模式植物细胞线粒体研究;
参考文献:用于模式动物研究
[1] The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in Salmonella enterica Serovar Typhimurium: a Phenotypic Study
J Bacteriol 2020, 202(2):e00348-19.
https://doi.org/10.1128/JB.00348-19
[2] Acceleration of the autoxidation of nitric oxide by proteins Nitric Oxide 2019, 85:28–34 https://doi.org/10.1016/j.niox.2019.01.014
[3] Catalase prevents myeloperoxidase self-destruction in response to oxidative stress Journal of Inorganic Biochemistry 2019, 197:110706 https://doi.org/10.1016/j.jinorgbio.2019.110706
[4] Cleistanthus collinus poisoning affects mitochondrial respiration and induces oxidative stress in the rat kidney Toxicology Mechanisms and Methods 2019, 29:8, 561-568 https://doi.org/10.1080/15376516.2019.1624905
[5] Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability
Free Radical Biology and Medicine 2019, 130:297-305 https://doi.org/10.1016/j.freeradbiomed.2018.10.433
[6] Angiotensin II downregulates vascular endothelial cell hydrogen sulfide production by enhancing cystathionine γ-lyase degradation through ROS-activated ubiquitination pathway
Biochemical and Biophysical Research Communications 2019, 514(3):907-912
https://doi.org/10.1016/j.bbrc.2019.05.021
[7] Glutathione Responsive β-Cyclodextrin Conjugated S-Nitrothiols as a Carrier for Intracellular Delivery of Nitric Oxide Bioconjugate Chem. 2019, 30, 3, 583-591
https://doi.org/10.1021/acs.bioconjchem.8b00735
[8] Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation Clin Sci (Lond) 2019, 133(20): 2045-2059.
https://doi.org/10.1042/CS20190514
[9] The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation
Front Immunol. 2018, 9:882 https://doi.org/10.3389/fimmu.2018.00882
[10] Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by superoxide dismutase Redox Biology 2018, 15:74–85
https://doi.org/10.1016/j.redox.2017.11.009
[11] Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia Free Radical Biology and Medicine 2018, 126:322-333
https://doi.org/10.1016/j.freeradbiomed.2018.08.025
[12] Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner
Oxid Med Cell Longev. 2018, 2018:9396089. https://doi.org/10.1155/2018/9396089
[13] PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons Cell Death & Disease 2018, 9:869
https://doi.org/10.1038/s41419-018-0910-5
[14] Carbonic anhydrase II does not exhibit Nitrite reductase or Nitrous Anhydrase Activity Free Radical Biology and Medicine 2018, 117:1-5 https://doi.org/10.1016/j.freeradbiomed.2018.01.015
[15] Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophyvia a SIRT3-dependent manner. Br J Pharmacol. 2018;175(8):1126-1145.
https://doi.org/10.1111/bph.13861
[16] N-Salicyloyltryptamine, an N-BenzoyltryptamineAnalogue, Induces Vasorelaxation through Activation of the NO/sGC Pathway and Reduction of Calcium Influx
Molecules 2018, 23(2), 253; https://doi.org/10.3390/molecules23020253
[17] NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation Toxicon 2017, 133:10-17
https://doi.org/10.1016/j.toxicon.2017.04.010
[18] Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS)
Redox Biology 2017, 12:325-339 https://doi.org/10.1016/j.redox.2017.02.021
[19] H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension Laboratory Investigation 2017, 97:268–278
https://doi.org/10.1038/labinvest.2016.129
[20] Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats Front. Pharmacol. 2017, 8:128
https://doi.org/10.3389/fphar.2017.00128
[21] SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells Antioxid Redox Signal. 2016;24(6):329-43. https://doi.org/10.1089/ars.2015.6331
[22] Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats Oxidative Medicine and Cellular Longevity 2016, 2016:2807490, 15 pages https://doi.org/10.1155/2016/2807490
[23] Hydrogen Sulfide Regulates Krüppel‐Like Factor 5 Transcription Activity via Specificity Protein 1 S‐Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy
J Am Heart Assoc. 2016;5(9). https://doi.org/10.1161/JAHA.116.004160
[24] Elevated Inducible Nitric Oxide Levels and Decreased Hydrogen Sulfide Levels Can Predict the Risk of Coronary Artery Ectasia in Kawasaki Disease
Pediatric Cardiology 2016, 37(2):322–329 https://doi.org/10.1007/s00246-015-1280-8
[25] Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats Nitric Oxide 2015, 46:192-203
https://doi.org/10.1016/j.niox.2015.01.004
[26] Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats Journal of Molecular Medicine 2015, 93(4):439–455
https://doi.org/10.1007/s00109-014-1227-1
[27] Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt
Oxidative Medicine and Cellular Longevity 2015, 2015:754670, 11 pages https://doi.org/10.1155/2015/754670
[28] Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study Planta Med 2013; 79(16): 1495-1500
https://DOI.org/10.1055/s-0033-1350803
[29] Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mit- ochondrial function, NFκB activation and TNF-α production
Shock. 2012; 37(3): 325–332.
https://doi.org/10.1097/SHK.0b013e31823f146f
[30] Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro Nitric Oxide 2010, 23(4):335-342
https://doi.org/10.1016/j.niox.2010.08.003
参考文献:用于模式植物研究
[1 ] Does oxidative stress determine the thennal limits of the regeneration niche ofVriesea friburgensis and Alcantarea imperial is (Bromeliaceae) seedlings?
Journal of Thermal Biology 2019,80:150-157 https://doi.org/10.1016, jtherbio.2019.02.003
[2] Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet Functional Plant Biology 2019,46(10):916-924
https://doi.org/10.l07l/FPI9079
[3] The role ofH2S in low temperature-induced cucurbitacin C increases in cucumber.
Plant Mol BioL 2019,99(6):535-544.
https://doi.org/10.1007/s 11103-019-00834-w
[4] Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under fill I sun in the nursery Scientific Reports 2019,9:17371
https://doi.org/10.1038/s41598-019-54030-3
[5] Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants Nitric Oxide 2019,84:38-44
https://doi.oig/10.1016/j.niox.2019.01.004
[6] Enhanced nitric oxide synthesis through nitrate supply improves drought tolerance of sugarcane plants bioRxiv preprint first posted online Nov. 30,2019
https://doi.oig/10.1101/860544
[7] Regulation of Hydrogen Sulfide Metabolism by Nitric Oxide Inhibitors and the Quality of Peaches during Cold Storage Antioxidants 2019,8:401-417
https://doi.org/10.3390/antiox8090401
[8] Hydrogen Sulfide Regulates Energy Production to Delay Leaf Senescence Induced by Drought Stress in Arabidopsis Front. Plant Sci. 2018,01722
https://doi.oig/ 10.3389/fpls.2018.01722
[9] Diversity of hydrogen sulfide concentration in plant: a little spark to start a prairie fire Science Bulletin2018,63:1314-1316
https://doi.org/10.1016/j.scib.2018.09.012
[10] Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet
Frontiers in Bioscience, Landmark 2017,22:530-538
Hydrogen sulfide mediates ion fluxes inducing stomatai closure in response to drought stress in Arabidopsis thaliana
Plant and Soil2017,419(1-2):141-152 https://doi.org/10.1007/s 111 04-017-3335-5
[11] Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana
Plant Sci. 2017,256:148-159.
https://doi.oig/10.1016/j.plantsci.2016.12.011
[12] Characterization of the Heme Pocket Structure and Ligand Binding Kinetics ofNon-symbiotic Hemoglobins from the Model Legume Lotus japonicus
Front. Plant Sci. 2017,00407 https://doi.oig/10.3389/fpls.2017.00407
[13] The Ca2+/calmodulin2-bindingtranscription factorTGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis
The Plant Journal 2017,91(6):1038-1050
https://doi.org/10.1111/tpj. 13627
[14] Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants
Nitric Oxide 2016,61:10-19 https://doi.org/10.1016/j.niox.2016.09.010
[15] Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit Planta 2016,244( 1):181-190
https://doi.org/10.1007/s00425-016-2501 -y
[16] Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants
Plant and Cell Physiology 2010,51 (3): 422-434
https://doi.oig/1 ().1093/pcp/pcq007
参考文献:用于模线粒体氧化应激和呼吸研究
[1 ] Interplay ofNitric Oxide Synthase (NOS) and SrrAB in Modulation of Staphylococcus aureus Metabolism and Virulence Infect Immun. 2019,87(2)x00570-18.
https://doi.org/10.1128/1A1.00570-18
[2] 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-diflerentiation Experimental Cell Research 2019,385(2): 111683
https://doi.oig/10.1016/j.yexcr2019.111683
[3] Cleistanthus collinus poisoning affects mitochondrial respiration and induces oxidative stress in the rat kidney Toxicol Meeh Methods. 2019,29(8):561-568
https://doi.oig/10.1080/15376516.2019.1624905
[4] Acceleration of the autoxidation of nitric oxide by proteins
Nitric Oxide 2019,85(1):28-34
https://doi.oig/ 10.10I6/j.niox.2019.01.014
[5] Hypoxia perturbs endothelium by re-organizing cellular actin architecture: Nitric oxide offers limited protection
Tissue and Cell 2018,50:114-124
https://doi.org/10.1016/j.tice.2017.12.007
[6] Carbonic anhydrase II does not exhibit Nitrite reductase or Nitrous Anhydrase Activity
Free Radical Biology and Medicine 2018,117:1-5
https://doi.oig/10.1016/j .freeradbiomed.2018.01.015
[7] Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia
Free Radical Biology and Medicine 2018,126:322-333 https://doi.org/10.1016/j.freeradbiomed.2018.08.025
[8] Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner BrJ Pharmacol. 2018,175(8): 1126-1145.
https://doi.org/10J 11 l/bph. 13861
[9] Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation
Biomaterials 2018, 187:55-65
https://doi.org/10.1016/j.biomaterials.2018.09.043
[10] Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner
Oxidative Medicine and Cellular Longevity 2018,2018,9396089,17 pages
https://doi.oig/10.1155/2018/9396089
[11] Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H2S Donors
ACS Chem. Biol. 2017,12(8):2117-2123 ' https://doi.org/l0.1021/acschembio.7b00279
[12] Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia
lntJ.Mol.Sci.2017,18(9), 1897;
https://doi.org/10.3390/ijms 18091897
[13] Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance
Coron Artery Dis. 2017,28(1): 33T3. https://doi.oig/10.1097/MCA.0000000000000434
[14] Expression of multiple cbb3 cytochrome coxidase isofbrms by combinations of multiple isosubunits in Pseudomonas aeruginosa PNAS 2016,113(45):12815-12819
https://doi.org/10.1073/pnas. 1613308113
[15] The Tenninal Oxidase Cytochrome bdPromotes Sulfide-resistant Bacterial Respiration and Growth
Scientific Reports 2016,6:23788 https://doi.org/10.1038/srep23788
[16] S1RT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells
Antioxidants & Redox Signaling 2016,24(6): 329-343
https://doi.org/10.1089/ars.2015.6331
[17] The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic fiinction in a rat model of alcohol-induced fatty liver disease
Redox Biology 2016,9:188-197
https://doi.oig/10.1016/j.redox.2016.08.005
[18] Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt
Oxidative Medicine and Cellular Longevity 2015,2015:754670.11 pages http://dx.doi.oig/10.1155/2015/754670
[19] Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption
Redox Biology 2014,2:667-672
https://doi.org/ 10.1016/j .redox.2014.04.010
[20] Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties
Phannacological Research 2014,81:34-43 https://doi.org/ 10.1016/j .phrs.2014.01.003
[21 ] Chapter Twelve - Measurement of ROS Homeostasis in Isolated Mitochondria
Methods in Enzymology 2014, 547:199-223 https://doi.oig/10.1016/B978-0-12-80I415-8.00012-6
[22] Oxygen dependence of nitric oxide-mediated signaling
Redox Biology 2013,1(1):203-209
https://doi.org/10.1016/j.redox.2012.11.002
[23] Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure Pediatric Research 2012,72:468X78
https://doi.oig/10.1038/pr.2012.120
[24] Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mit -ochondrial function, NFKB activation and TNF-a production
Shock. 2012,373:325—332.
https://doi.oig/10.1097/SHK.0b013e31823fl46f
[25] Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Im -plications for phototherapy
Journal of Photochemistry and Photobiology B: Biology 2011,102(3): 182-191
https://doi.oig/10.1016/j.jphotobiol.2010.12.002