气体信号分子和生物自由基检测仪
仪器概况
TBR4100气体信号分子和生物自由基检测仪是一款四通道高通量气体信号分子和生物自由基检测设备,可检测的指标包括一氧化氮(NO)、一氧化碳(CO)、硫化氢(H2S)、葡萄糖(Glu)、氧气(O2)以及过氧化氢(HPO)。
由于具有性能完全相同的电气隔离的四通道构造,可以高通量地同时检测四个样本或同一个样本中的四个不同指标;柔性碳纤维微型电极的开发,尖端大小仅有100微米(一氧化氮甚至开发出用于细胞内检测的 100纳米尖端的电极),可以在没有大的创伤情况下将电极直接插入到麻醉动物体内或离体动物组织器官样本中进行实时在体检测,是模式动物研究以及离体组织器官研究氧化应激以及ROS检测的最佳工具,也是体内信号分子和生物自由基指标如一氧化氮、硫化氢或过氧化氢变化动力学的最佳分析工具。
仪器特征
◇样本检测多通道:由于具有四个功能完全相同的电气隔离通道,可以 同时进行四个样本的检测,也可以用于单个样本的四个不同指标检测; 多种电极可选:不同检测指标的电极如一氧化氮(NO)、一氧化碳(CO)、硫化氢(H2S)、氧气(O2)、过氧化氢(HPO)和葡萄糖电极可选;
◇组织电极和溶液电极可选:由于柔性碳纤维电极的开发,使一氧化氮、硫化氢、过氧化氢电极的尖端更小,组织电极最小可达30微米,因此对整体动物和离体组织的创伤更小,应激更小,可用于插入动物和植物的组织内进行实时在体测量,也可以在动物离体组织器官或植物叶片、根茎中进行动力学观察; 2毫米溶液电极可用于溶液包括血清、尿液、唾液样本、组织及细胞匀浆中进行多种信号分子和自由基检测;
◇空间分辨率高:由于微电极通常是用尖端去检测样本环境中的物质含量,也就意味着尖端越小对空间越小的样本中化学梯度的变化同样可以测量,常常用于组织不同深度信号分子含量的测量,也用于非常小范围内信号分子和自由基的测量如眼睛前房,脑室等;
◇灵敏度高:由于采用电化学原理,对原子间氧化还原极小的电流皮安都可以记录,因此即使在体内几个纳摩尔信号分子的变化都能够清晰地记录;
◇反应速度快:微电极尖端越小,反应速度越快,化合物越容易扩散到电极尖端内部,一氧化氮、硫化氢和过氧化氢的反应时间小于5秒;氧气和一氧化碳反应时间小于10秒;
◇检测范围广:检测的分子中最低限可达纳摩尔级,最高限可达毫摩尔级,因此可用于模式动物的生理状态或病理状态的信号分子和生物自由基物质变化的检测;
主要用途
●用于动物缺血再灌注损伤研究:心脏缺血再灌注,脑缺血再灌注;
●高血压机制及抗高血压药物作用机制研究;
●糖尿病外周血管功能紊乱研究;
●肿瘤生长代谢研究;
●一氧化氮和硫化氢释放的体内纳米材料研究;
●模式动物的氧化应激研究;
●阿尔兹海默症的发病机制及治疗机制研究;
●用于过敏性结肠炎的发病机制及治疗机制研究;
●用于炎性疾病的自由基对模式动物影响的研究;
●用于肿瘤组织、脑组织、心肌细胞、肌肉组织中线粒体氧化应激研究;
应用案例
1、 在高血糖动物血液内实时检测NO和HPO:
2、 内皮细胞体外模型中直接实时测量切应力引起的NO的产生:
3、 大鼠股静脉缺血再灌注血管内皮功能紊乱的研究:
4、脑缺血再灌注损伤NO的动态研究:
参考文献
[1] The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in Salmonella enterica Serovar Typhimurium: a Phenotypic Study J Bacteriol 2020, 202(2):e00348-19.
https://doi.org/10.1128/JB.00348-19
[2] Acceleration of the autoxidation of nitric oxide by proteins Nitric Oxide 2019, 85:28–34
https://doi.org/10.1016/j.niox.2019.01.014
[3] Catalase prevents myeloperoxidase self-destruction in response to oxidative stress Journal of Inorganic Biochemistry 2019, 197:110706
https://doi.org/10.1016/j.jinorgbio.2019.110706
[4] Cleistanthus collinus poisoning affects mitochondrial respiration and induces oxidative stress in the rat kidney Toxicology Mechanisms and Methods 2019, 29:8, 561-568
https://doi.org/10.1080/15376516.2019.1624905
[5] Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability Free Radical Biology and Medicine 2019, 130:297-305
https://doi.org/10.1016/j.freeradbiomed.2018.10.433
[6] Angiotensin II downregulates vascular endothelial cell hydrogen sulfide production by enhancing cystathionine γ-lyase degradation through ROS-activated ubiquitination pathway Biochemical and Biophysical Research Communications 2019, 514(3):907-912
https://doi.org/10.1016/j.bbrc.2019.05.021
[7] Glutathione Responsive β-Cyclodextrin Conjugated S-Nitrothiols as a Carrier for Intracellular Delivery of Nitric Oxide Bioconjugate Chem. 2019, 30, 3, 583-591
https://doi.org/10.1021/acs.bioconjchem.8b00735
[8] Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation Clin Sci (Lond) 2019, 133(20): 2045-2059.
https://doi.org/10.1042/CS20190514
[9] The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation Front Immunol. 2018, 9:882
https://doi.org/10.3389/fimmu.2018.00882
[10] Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by superoxide dismutase R edox Biology 2018, 15:74–85
https://doi.org/10.1016/j.redox.2017.11.009
[11] Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia Free Radical Biology and Medicine 2018, 126:322-333
https://doi.org/10.1016/j.freeradbiomed.2018.08.025
[12] Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent
Manner Oxid Med Cell Longev. 2018, 2018:9396089.
https://doi.org/10.1155/2018/9396089
[13] PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons Cell Death & Disease 2018, 9:869
https://doi.org/10.1038/s41419-018-0910-5
[14] Carbonic anhydrase II does not exhibit Nitrite reductase or Nitrous Anhydrase Activity Free Radical Biology and Medicine 2018, 117:1-5
https://doi.org/10.1016/j.freeradbiomed.2018.01.015
[15] Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophyvia a SIRT3-dependent manner. Br J Pharmacol. 2018;175(8):1126-1145.
https://doi.org/10.1111/bph.13861
[16] N-Salicyloyltryptamine, an N-Benzoyltryptamine Analogue, Induces Vasorelaxation through Activation of the NO/sGC Pathway and Reduction of Calcium Influx Molecules 2018, 23(2), 253;
https://doi.org/10.3390/molecules23020253
[17] NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation Toxicon 2017, 133:10-17
https://doi.org/10.1016/j.toxicon.2017.04.010
[18] Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS) Redox Biology 2017, 12:325-339
https://doi.org/10.1016/j.redox.2017.02.021
[19] H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension Laboratory Investigation 2017, 97:268–278
https://doi.org/10.1038/labinvest.2016.129
[20] Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats Front. Pharmacol. 2017, 8:128
https://doi.org/10.3389/fphar.2017.00128
[21] SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells Antioxid Redox Signal. 2016;24(6):329-43.
https://doi.org/10.1089/ars.2015.6331
[22] Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats Oxidative Medicine and Cellular Longevity 2016, 2016:2807490, 15 pages
https://doi.org/10.1155/2016/2807490
[23] Hydrogen Sulfide Regulates Krüppel‐Like Factor 5 Transcription Activity via Specificity Protein 1 S‐Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy J Am Heart Assoc. 2016;5(9).
https://doi.org/10.1161/JAHA.116.004160
[24] Elevated Inducible Nitric Oxide Levels and Decreased Hydrogen Sulfide Levels Can Predict the Risk of Coronary Artery Ectasia
in Kawasaki Disease Pediatric Cardiology 2016, 37(2):322–329
https://doi.org/10.1007/s00246-015-1280-8
[25] Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats Nitric Oxide 2015, 46:192-203
https://doi.org/10.1016/j.niox.2015.01.004
[26] Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats Journal of Molecular Medicine 2015, 93(4):439–455
https://doi.org/10.1007/s00109-014-1227-1
[27] Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt Oxidative Medicine and Cellular Longevity 2015, 2015:754670, 11 pages
https://doi.org/10.1155/2015/754670
[28] Mechanism of the Vasodilator Effect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study Planta Med 2013; 79(16): 1495-1500
https://DOI.org/10.1055/s-0033-1350803
[29] Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mitochondrial function, NFκB activation and TNF-α production Shock. 2012; 37(3): 325–332.
https://doi.org/10.1097/SHK.0b013e31823f146f
[30] Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro Nitric Oxide 2010, 23(4):335-342
https://doi.org/10.1016/j.niox.2010.08.003